Are Pan-Diagnostic Molecular Tests a Panacea?

Paul Levett

BCCDC Public Health Laboratory Vancouver

Disclosures

* Support from Hologic

Objectives

- * Learn about challenges in using multiplex versus pandiagnostic molecular respiratory tests from a public health perspective
- * Outline some lessons learned on how to manage workflow during the influenza season

Background

- Laboratory processes described in this presentation are those used at the Saskatchewan Disease Control Laboratory (SDCL)
- Studies using the Hologic Panther Fusion real-time PCR assays were performed at the Saskatchewan Disease Control Laboratory

Evolution of Respiratory Molecular Testing at SDCL

- * Pre-pandemic testing
- * 2009 influenza pandemic
- * Post-pandemic multiplex testing of outbreaks only
- * Pan-diagnostic testing using LDT platform
- * Evaluation of commercial random access PCR assays

Pre-Pandemic Testing

- * Traditional virology: DFA, culture
- * Singleton PCR assays for influenza A and typing on outbreak specimens
- * Run on 96 well thermal cyclers
- * Manual processing
- Pandemic preparedness: validated pre-amplification processing on commercial open platform (Abbott m2000)

2009 Influenza Pandemic

- * Rapid scaling-up to include simultaneous testing of 5 flu A targets, using CDC primers
- Addition of two temporary staff positions and two thermal cyclers
- Testing volume rapidly surpassed capacity of the automated platform
 - * Continued with manual specimen processing
 - * Repetitive strain injuries
- * Diagnostic culture in virology essentially ceased during pandemic due to PHAC biosafety advisory
 - * Delay in detection of other viruses
 - * Possible effect on patient care?

Post-Pandemic Multiplex Testing

- Validation of Luminex xTag multiplex testing
- Significantly enhanced respiratory outbreak testing
- * High cost per sample restricted use to samples from institutional outbreaks
- Positive feedback from MHOs
- Multiple testing pathways for specimens from different patients

What Led to the Development of an In-House Pan-Diagnostic Testing Platform?

- * Concerns about:
 - Treating some specimens differently ("better" or "worse") than others
 - * Multiple touches of same specimen
- * Seeking efficiency via government-wide LEAN approach
- * Aim to treat every specimen the same way
- * Evaluated commercial multiplex PCR assays
 - * High cost, did not cover all target viruses

Development of an In-House Pan-Diagnostic Testing Platform

 * Selected high-throughput PCR using Taqman chemistry on a microfluidic 48.48 chip using a BioMark HD system (Fluidigm)

Microfluidic PCR Process

- * Samples aliquoted into lysis buffer
- * Total nucleic acid extraction using a Kingfisher extractor
- * Each extract subjected to combined RT and preamplification step in a "pre-amp soup"
- * After pre-amplification, pipetted into digital integrated fluidic circuit (the chip) along with reagents
- Loaded onto an IFC controller with prepares the chip for thermal cycling
- * Chip transferred into the Biomark HD thermal cycler
- * Post-amplification analysis and reporting

Advantages

- * Treat every specimen the same
 - * 48 individual assays on every sample
 - * Multiple targets per pathogen
 - * Influenza typing on every specimen
 - * B. pertussis included
 - * Novel pathogens can be run on every specimen (eg: MERS)
- * Extremely low cost per specimen
 - * 48 assays for the cost of a single assay in a 96 well format

Antonishyn et al., 2014 (CACMID abstract Go2)

Disadvantages (1)

- * High capital cost ~ \$250,000 in 2014
- * No redundancy
 - * single instrument leaves process vulnerable to equipment failure
- * Extensive validation required, for each assay and for all assays combined
- * Huge quality control undertaking
- * Difficult to change the panel quickly
- * Extensive manual pipetting: repetitive strain injuries
- * Pipetting of pre-amplified template into chip
 - * Potential for contamination
- * Manual data transfer and analysis post-amplification

Disadvantages (2)

- * Reaction volume ~ 9 nL
 - Potential for stochastic effects
 - * Performance in PT samples designed to challenge limit of detection
- * Process requires 2 FTEs
- * Six hour process from sample processing to results
- * Difficult to meet same day turn around time
- * Has led to a one day delay in testing most specimens, multiple days during peak flu season
- * Outbreak specimens are tested by DFA or by rapid antigen tests, depending on time of receipt

BCCDC Respiratory Testing

- * Samples aliquoted into lysis buffer
- * Nucleic acids extracted using MagMax extractor
- * Influenza A/B + RSV + RNaseP 4-plex PCR
- * Influenza typing PCR
- If negative for flu/RSV, outbreaks/in-patients/children/ immunocompromised tested using Luminex NxTAG respiratory panel
- * Enterovirus D68 PCR upon request
- * Algorithm adjusted seasonally
- * Interfacing to LIS!

Is There a Better Approach?

- * Can this manual process be automated?
- * Off the shelf automation cannot perform all the steps required
- * Custom liquid handler was designed to de-cap specimen and process up to the extraction step
- * Estimated cost US \$400,000
- * Perhaps unsurprisingly, this was not funded

Is There a Better Approach?

- If lab-developed high throughput testing creates its own workflow problems, are there commercial platforms that will provide an alternative?
- * SDCL has been using Hologic (formerly GenProbe) instruments for STI testing for about 10 years
- * In fall 2017, a new Panther was installed for a viral load assay pre-qualification study
- Presented an opportunity to evaluate Panther Fusion respiratory virus assays

Panther Fusion PCR Assays

- * Random access, real-time PCR platform
- * Manual transfer from UTM tube to lysis buffer
- * Capacity to amplify 60 assays in sealed tubes, in 12 independent rows
- * Three respiratory panels
 - * Flu A/B/RSV
 - * Parainfluenza 1/2/3/4
 - * Adeno/hMPV/Rhinovirus
- * All three panels can be run on a single sample extraction
- * Time to first result ~2.5 hr, followed by five results every 5 min

Performance of Panther Fusion versus Microfluidic LDT

- * Tested 939 specimens during 2017-18 flu season
- * Positive agreement between tests:
 - * 99-100% for flu A, flu B and para-flu
 - * 96% for RSV
 - * 57% for adenovirus (11 specimens)
 - * 100% for hMPV (Fusion assay detected 35% more positives)
- * Difficult to compare rhinovirus (Fusion) versus entero/rhino (LDT)
- * No coronavirus assay in Fusion panels

Workflow of Panther Fusion versus Microfluidic LDT

- * Ran three days of real time testing in parallel with LDT, as specimens arrived in the lab
- * One day as an example:
- * 116 specimens received, 147 minutes hands-on time
- Second cleaning benches and loading instrument
- Is an first specimens arrived at lab
- () 9:35 am first rack of specimens loaded
- ③ 3:30 pm all results on 73 samples (Fusion) vs 37 samples (LDT)
- (9) 4:00 pm all Fusion results on 79 samples
- S 8:00 am next day, all Fusion results complete on 116 samples
- ③ 3:30 pm all results complete on LDT
- * Note: This comparison was done at the tail-end of the influenza season, when specimen numbers were decreasing

Microfluidic LDT versus Panther Fusion Respiratory Assays

- Panther Fusion generated results faster than microfluidic LDT
- * Much lower hands-on time
- * Smaller range of viral targets on Panther Fusion
- * Lack of influenza typing
- * Flexibility for testing influenza versus whole panel
- * Reflex testing without additional extractions
- Potential for combination of commercial products and LDT on the same Panther Fusion instrument

Conclusions

- Pan-diagnostic testing using microfluidic PCR seemed like a good idea 5 years ago
- With hindsight, manual process involving extensive pipetting exacerbated RSI issues
- Increased workload created delays in testing during peak influenza seasons
- * Commercial random-access panels offer gretaer flexibility compared with batch-based fixed panels
- * Consider cost per reportable, including hidden costs
- * Centralized testing may not serve the needs of largely rural populations
 - * Distributed testing for influenza and RSV in local labs?
- * Need to think far ahead when planning a testing strategy

Acknowledgements

- * Linda Mushanski and Cheryl Brown, SDCL virology
- * SDCL molecular diagnostic staff